Cone Monotone Mappings: Continuity and Differentiability
نویسنده
چکیده
We generalize some results of Borwein, Burke, Lewis, and Wang to mappings with values in metric (resp. ordered normed linear) spaces. We define two classes of monotone mappings between an ordered linear space and a metric space (resp. ordered linear space): K-monotone dominated and coneto-cone monotone mappings. K-monotone dominated mappings naturally generalize mappings with finite variation (in the classical sense) and K-monotone functions defined by Borwein, Burke and Lewis, to mappings with domains and ranges of higher dimensions. First, using results of Veselý and Zaj́ıček, we show some relationships between these classes. Then, we show that every K-monotone function f : X → R, where X is any Banach space, is continuous outside of a set which can be covered by countably many Lipschitz hypersurfaces. This sharpens a result due to Borwein and Wang. As a consequence, we obtain a similar result for K-monotone dominated and cone-to-cone monotone mappings. Finally, we prove several results concerning almost everywhere differentiability (also in metric and w-senses) of these mappings.
منابع مشابه
Cone Monotone Functions: Differentiability and Continuity
We provide a porosity based approach to the differentiability and continuity of real valued functions on separable Banach spaces, when the function is monotone with respect to an ordering induced by a convex cone K with non-empty interior. We also show that the set of nowhere K-monotone functions has a σ-porous complement in the space of the continuous functions.
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملOn Gâteaux Differentiability of Pointwise Lipschitz Mappings
Abstract. We prove that for every function f : X → Y , where X is a separable Banach space and Y is a Banach space with RNP, there exists a set A ∈ Ã such that f is Gâteaux differentiable at all x ∈ S(f) \ A, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is...
متن کاملDifferentiability of Cone-monotone Functions on Separable Banach Space
Motivated by applications to (directionally) Lipschitz functions, we provide a general result on the almost everywhere Gâteaux differentiability of real-valued functions on separable Banach spaces, when the function is monotone with respect to an ordering induced by a convex cone with nonempty interior. This seemingly arduous restriction is useful, since it covers the case of directionally Lips...
متن کامل